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Classification and sequence learning are relevant capabilities used by living beings to extract complex information
from the environment for behavioral control. The insect world is full of examples where the presentation time
of specific stimuli shapes the behavioral response. On the basis of previously developed neural models, inspired
by Drosophila melanogaster, a new architecture for classification and sequence learning is here presented under
the perspective of the Neural Reuse theory. Classification of relevant input stimuli is performed through resonant
neurons, activated by the complex dynamics generated in a lattice of recurrent spiking neurons modelling the insect
Mushroom Bodies neuropile. The network devoted to context formation is able to reconstruct the learned sequence
and also to trace the subsequences present in the provided input. A sensitivity analysis to parameter variation and
noise is reported. Experiments on a roving robot are reported to show the capabilities of the architecture used as a
neural controller.
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1. Introduction

Bio-inspired robotics is nowadays strongly influenced
by the new results in understanding the insect behav-
ioral capabilities to develop autonomous robotic systems
able to deal with complex dynamically changing environ-
ments14, 53, 77 and adaptive navigation control.64 Among
insect species the fruit fly is a perfect model organism
due to the relatively low number of neurons in the central
brain (about 105) organized in different neuropiles, in-
volved in a multitude of interesting behaviors.30 Mutant
and wild-type fly behaviors can be compared, through
focused experiments, using genetic tools based on the
GAL4 technique.35 These procedures allow to discrim-
inate which neural centre and learning mechanisms are
responsible for each behavioral response.21, 72, 85 In pre-
vious works7, 16, 18 the authors developed an insect brain

architecture, mainly realized with spiking networks,42

to model some relevant functions of Mushroom Bodies
(MBs) and Central Complex (CX),15, 63 important centres
of the insect brain. From Neurobiology it is known that
MBs are mainly responsible for olfactory learning,44, 54, 75

but recently they were discovered to handle also the adap-
tive termination of behaviors, multimodal integration and
a multitude of other behavioral responses, like decision
making and motor learning.36, 45 In recent works, the ba-
sic functionalities of the fruit fly MBs computational
model, related to olfactory learning, were extended to
perform more complex tasks among which are attention,
expectation and delayed match-to-sample.20, 22, 23

MBs show anatomical and functional similarities
with mammalian hippocampus and cerebellum,37 the lat-
ter having a role in motor sequence learning.55 Such
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functionalities were modelled through hetero-associative
memory.32, 52 The role of time is also emphasised in the
locusts olfactory processing:88 the encoding of complex
natural stimuli such as odours may involve the precise
timing of neural activity. All these results were exploited
in our model, where the olfactory system and neural cir-
cuits are modelled as dynamical systems able to produce
a series of behaviors. The time is mapped into a space-
distributed dynamic which can serve a multitude of con-
current behaviors, among which sequence learning and
reproduction.

In Drosophila melanogaster (DM), there are differ-
ent types of olfactory sensing neurons, whose collective
dynamics contributes to encode the features (e.g. odorant
components) of the source providing the stimuli. The An-
tennal Lobes (ALs) are the first neuropile encountered in
the olfactory path and consist of glomeruli linked to ol-
factory receptors that transfer information, through Pro-
jection Neurons (PNs), to the protocerebral areas.80 The
connection with the large number of MBs cells allows a
boost in dimensionality useful to improve the represen-
tation space.25, 44 At the same time PNs are connected
to the Lateral Horn (LH). In locusts LH inhibits, after a
delay, the activity of the Kenyon Cells (KCs) neurons.67

Therefore the KCs receive a sequence of excitatory and
inhibitory waves from the PNs and LH respectively and
are believed to communicate with one-another through
axo-axonal synapses.29 The distance between two con-
secutive waves defines the time window used for infor-
mation processing through the maintained spiking activ-
ity in the KCs.46 In the proposed model we considered a
time window of 80ms. These characteristics were used in
literature to analyse pattern formation66, 67 and to formu-
late non-elementary learning mechanisms.89 When mod-
elling complex neural activities to generate time-varying
signals, two among the main strategies are either to use
suitably controlled chaotic dynamics,8, 73 or to explore
Reservoir Computation, by extracting the needed dynam-
ics using read-out maps.51, 56 The key feature introduced
in this paper is that, in order to address a number of
different functionalities into such a tiny structure, like
the MBs, it is necessary to migrate from a traditional,
block-size computational model28 (where each sub block
is in charge for a particular defined function) to a holistic
view of brain processing, mainly related to the concept of
emergence and complex dynamics generation. This con-
cept has much in common with the modern theory of
Neural Reuse,4 which is here exploited for the emergence
of different behaviors in parallel.

In this paper we modelled the KC layer as a dynamic
spatial temporal pattern generator extracting the relevant
dynamics needed to perform a behavioral task by training
multiple read-out maps that mimic the role of extrinsic
neurons in the biological system as described in details
in recent works.24, 25 After analysing interesting studies
on Neural Dynamics model, inspired by the biological
nervous system, and applied for problem solving,1–3, 69

we focused our attention on different kinds of spiking-
based networks.42, 90 Finally we decided to model the
KCs activity as a Liquid State Network (LSN), a lattice of
connected spiking neurons similar to a Liquid State Ma-
chine,56 that contains mainly local synaptic connections
(as in a Cellular Nonlinear Network structure5, 11 already
used for locomotion control12), resembling axo-axonal
communication among the KCs.29 This lattice modulates
sensory information, creating a dynamic map, which can
be exploited concurrently both for classification and for
motor learning purposes. In the former case, a signal of
a specific, pre-assigned frequency is generated for each
output class; in the latter case, by trial and error, the sys-
tem can adapt the motor parameters so as to obtain a
rewarding limb motion for the assigned task. The time-
varying signals modulating those parameters, for instance
to perform a climbing action (e.g. generated through a
series of trials), can be extracted from the dynamics con-
tained in the MB-lobes. KC neural circuitry is therefore
re-used concurrently for a number of different aims, as in
the line of the Neural Reuse, which has been addressed
as a property particularly worth to be studied in the tiny
insect brains.65 Furthermore, in contrast with the previ-
ous model discussed in Refs. 22 and 6, in the architecture
here formulated, the KCs dynamics does no longer con-
verge to a cluster of activity directly related to the input.
Taking into account also other approaches as reported in
Ref. 39, we performed the classification task exploiting
the sparse dynamics generated within the KC lattice of
neurons implemented using a LSN, which now is not re-
quired to reach an equilibrium in the firing rate. Instead
multiple read-out maps exploit this far-from-equilibrium
dynamics (as found in Ref. 71) and are trained to stim-
ulate resonant neurons representing specific classes. The
role of resonant neurons in classification of auditory stim-
uli was already demonstrated in several works related to
other insects like crickets10, 74, 87 and also for classifica-
tion of mechanical data acquired by a bio-inspired an-
tenna system.70 This approach allowed to consider also
motor learning capabilities, where learning the time evo-
lution of reference signals is a key element,5 within the
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MB computational model. Therefore we can both clas-
sify static features and learn time-dependent signals to
be exploited as references for the motor system. Several
attempts were performed to model the MBs for classifica-
tion with structures mainly based on spiking neurons.61, 76

An important difference with our model consists in the
introduction of a new layer, named Context layer, needed
to include sequence learning capabilities to the architec-
ture. The KCs, when stimulated, produce sparse activ-
ity67, 78 that has been associated to classes with reinforce-
ment learning in a structure similar to a Support Vector
Machine ()see Refs. 48 and 47). From the other hand,
our architecture exploits the complex internal dynamics
that is extracted and condensed in periodic signals whose
frequency is able to stimulate specific resonant neurons.
We considered an unsupervised growing mechanism to
create new classes and a supervised learning to train the
read-out maps. To include sequence learning capabilities
to the proposed system a Context layer was introduced.
This structure is responsible for storing and retrieving se-
quences of events. Even if its position within the insect
brain is not yet identified, the MB lobes are good candi-
dates.81

The size of the proposed network in terms of num-
ber of neurons and connections was down-scaled with re-
spect to the biological counterpart to reduce the computa-
tional time in view of a robotic implementation. The idea
is to consider the Context layer as composed by groups of
neurons topologically organized in concentric circles. We
know that this kind of arrangement is present for instance
in bees, where the calyx neuropile is concentrically orga-
nized.84 Moreover, patterns of genetic expression in DM
revealed that KC axons projecting into the γ lobe form
the circumference of the peduncle, whereas a quartet of
axon bundles form the core of the peduncle and project
into the α and β lobes:33 a concentric axon bundle is
thus present in the fly MBs. In our model we hypothe-
size that each ring is stimulated during an input presen-
tation and we assume that neural activity moves from the
inner to the outer ring in time following a diffusion-like
process. The Context neurons are connected to the reso-
nant neurons where they compete with the current input
information to produce the output of the network through
non-elemental learning processes43, 89 that are at the ba-
sis of the expectation and sequence learning schemes. In
Ref. 58 a spiking network was trained using bio-inspired
learning mechanisms to generate temporally ordered pat-
terns of neuronal activity, similar to those ones observed
in the mammalian cortex, in response to repeated se-

quences of sensory inputs. The network is divided in
multiple layers and works as Winner-takes-all reinforc-
ing synaptic connections among consecutive clusters. In
our architecture we adopted resonant neurons for classifi-
cation and we introduced a Context layer to learn com-
plex sequences where the same input can be repeated
multiple times in the sequence and to handle also sub-
sequences that can be extracted from longer sequences if
relevant for the on-going task. As far as sequance learn-
ing is concerned in Drosophila melanogaster (DM), the
experiments reported in Refs. 62 and 57 represent a first
attempt where the DM behavior was tested in a multi-
ple T-maze scenario. The results suggest that, in some
configurations, DM statistically prefers to persist in the
selected chosen action (e.g. left turn) repeating it mul-
tiple times (sequential repetition) whereas in a different
set-up it prefers to switch the decision in time (sequen-
tial alternation). Therefore, to the best of our knowledge,
the presence of sequence learning in flies is up to now
unclear. Our effort is also in this direction: we are not
arguing that DM is able to show sequence learning, but
that in principle its brain contains the neural circuits and
learning functions needed. The obtained simulation re-
sults can be the starting point for new biological experi-
ments to answer to this open question. To support our hy-
pothesis the ability of DM to face a Morris water maze-
like experiment seemed to be out of DM behaviors un-
til recently demonstrated.38 The developed computational
model was used as a neural controller for a roving robot
facing with different scenarios inspired to experiments
performed with honeybees91 that are able to use visual
features of objects to make a series of decisions while
negotiating a complex maze and learn rules that allow
to fulfil the assigned tasks. The basic idea is to consider
each element of a sequence as an external input coming
from the sensory system. The sequence is treated as gen-
eral as possible: each element could represent either an
odour, a visual pattern, or another external, or even en-
dogenously generated input. After the input processing
the system performs an action/behavior associated to that
input (e.g. a following action) and in the meantime as-
sociates to the stimulus the corresponding motor action
performed (e.g. left turn and forward movement). When,
during the recall phase, the input is noisy or absent, the
neural network evokes the learned sequence looking for
the next expected element and performs the associated
series of actions.
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Figure 1. Block scheme of the developed architecture (see text for details).

2. MB-inspired computational model

The computational model inspired by the MBs neuropile
processes external inputs, acquired in terms of general
features of the relevant objects present in the scene, us-
ing the ALs. This neural assembly is realized through
a 4x4 network of spiking neurons interconnected with
learnable synapses, used to filter out noise and to re-
construct missing features.20 The neural activity of the
ALs is then projected, through random connections with
probability of 25%, to the LSN. The LH is activated by
the external input and, after a delay (i.e. 80 ms in the
following simulations), it inhibits both the ALs and the
LSN resetting the neural activity and allowing the sys-
tem able to process new sensorial stimuli. Each neuron
within the LSN is connected, through trainable synapses,
to neurons acting as weighted integrators (here called
Sum Neurons) creating a read-out map of the LSN activ-
ity. As outlined above, in line with the theory of Neural
Reuse, the structure designed can elicit concurrently dif-
ferent behaviors for different purposes depending on the
structure of the read out map. Some behaviors, already
presented in other contributions,5, 20, 23 will be briefly dis-
cussed in Section 4. Here the classification and the se-
quence and sub-sequence learning, and later on, decision
making processes, are described in detail. With regards
to classification, each class is represented by a resonant
neuron realized through a Morris-Lecar model.60 A train-
ing procedure, described in the next section, allows to as-

sociate to each different input a resonant neuron repre-
senting a new class. The read-out-map is trained in a su-
pervised way: a periodic wave has been chosen as target
signal with a frequency able to stimulate the correspond-
ing resonant neuron. The first read-out map is trained to
generate a sine wave with a frequency of 62.5Hz when
the first input signal is provided. When resonant neurons
are not excited by the input a new read-out map is gen-
erated and a new frequency is associated. The frequency
range here used spreads from 50Hz to 250Hz. This inter-
val was chosen to allow the coexistence of about five dif-
ferent classes. Lower frequencies are infeasible because
at least five periods are needed to have a reliable number
of spikes in the resonators for a robust classification. To
learn a higher number of classes, the time window de-
fined for the target signal (i.e. 1000 samples with a sam-
pling time dt=0.08ms) should be increased to host enough
samples. Moreover in this case the time constants used
in the LSN should be tuned to generate the frequencies
needed. A minimum number of spikes (larger than 50%
of the maximum allowable depending on the frequency)
has been fixed to consider the resonator in an active state.
The signal coming from the Sum Neuron is shaped by
a Heaviside function, before entering into the resonator,
to filter-out noise. As depicted in Fig. 1, the Context layer
structure is organized in concentric rings (only three rings
were reported for the sake of simplicity). The first ring
contains a number of neurons equal to the current num-
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ber of classes (Nc). In the second ring, for each neuron
of the first ring, there are Nc neurons, and so on. This
implies that, within each ring, there are Nc

Nr neurons,
Nr being the ring number. The potentially large number
of neurons building-up the Context layer is justified be-
cause we are simultaneously learning both sequences and
subsequences. This possibility boosts the capabilities of
the structure, much beyond the simple sequence learning.
The number of rings considered defines the maximum se-
quence length. Lateral inhibition among neurons of the
same ring generates a competition, filtering out potential
disturbances.43

Sequence learning takes place through different se-
quential stages here called epochs characterized by a neu-
ral activity either stimulated by an external input or an
internally generated one to recall a missing element al-
ready stored in the network. During each epoch informa-
tion propagates one ring ahead, from the inner to the out-
ermost. So rings represent time steps characterising the
sequence length. Every epoch, the winner neuron in the
outermost ring visited for this epoch and the winner neu-
ron of the previous ring are subject to a learning process
which modulates their connection weights using Spike
Timing Dependent Plasticity (STDP),79 as performed in
several related works.9, 17, 68, 83 In our model, this process
could cover larger time scales than the standard STDP.
This is required to create correlations among consecutive
objects whose presentation does not happen within the
usual STDP time window. This aspect has been also the-
oretically treated in Ref. 39 where specific spike-based
plasticity rules were proposed. Furthermore biological
evidences of this phenomena are reported in literature for
insects and specifically on DM86 and can be modelled us-
ing memory traces and reverberation mechanisms.34, 50

Each neuron in the Context layer is also linked to an
End Sequence Neuron with STDP synapses. In details all
neurons in each ring are connected to the corresponding
End Sequence Neuron within an End Sequence Vector
(whose length matches the number of rings in the Con-
text). A rewarding signal, following the completion of a
sequence, activates the End Sequence Neuron for the out-
ermost ring of the Context layer. The synapse connecting
this End Sequence Neuron with the winner neuron in the
outermost ring will be thus reinforced. In our model the
reward signal acts as a dopaminergic stimulus on the End
Sequence Neuron to reward the sequence just completed
and reset the activity in the Context layer to start a new
sequence.50

2.1. The Liquid State Network

The LSN is composed by excitatory (75%) and inhibitory
(25%) neurons. The synaptic weight values are ran-
domly distributed between -0.5 and 0.5 whereas the input
weights are fixed to 1. The generation of the synaptic con-
nections within the lattice is based on a probability that is
a function of the distance di,j between the presynaptic (i)
and postsynaptic (j) neurons.

Pij = k ∗ Ci,j (1)

where Cinh,inh = 0.2, Cinh,exc = 0.8, Cexc,inh =

0.4, Cexc,exc = 0.6. and

k = 1 if di,j ≤ 1

k = 0.5 if 1 < di,j ≤ 2

k = 0 if di,j > 2

(2)

The parameters Ci,j have been chosen according to
Ref. 56. The distance is calculated considering the neu-
rons distributed on a regular grid with toroidal bound-
ary conditions. The distance di,j = 1 is considered for
both horizontally and vertically adjacent neurons. The
time constant of the synaptic model was randomly cho-
sen among the values τ = 2.5, 5, 15 and 25ms. This vari-
ability improves the dynamics that can be generated in-
side the network within the processing time window. The
Sum neurons, modelled with a linear transfer function,
are massively connected with the LSN. The weights of
the readout map are randomly initialized around zero and
are subject to learning.

2.2. Neural models and learning mechanisms

Different neuron models were used in the architecture to
generate the suitable dynamics needed in the subsystems:
the Izhikevich spiking neurons proposed in Ref. 49 and
widely used to model brain regions,82 and the Morris-
Lecar model (ML) in Ref. 60. As indicated in Fig. 1,
we adopted the Izhikevich Tonic spiking model in the
ALs, Context layer and End Sequence neurons whereas
the Class I model was exploited in the LSN. Classifica-
tion is performed using the ML neurons that can emit
spikes only if stimulated with a periodic input show-
ing a particular frequency; the neuron characteristic fre-
quency can be tuned acting on the model parameters.7

The synaptic model transforms the spiking dynamics of
the pre-synaptic neuron into a current that excites the
post-synaptic one.



July 3, 2018 18:0 ”Arena˙IJNS Rev3”

6 Arena et al.

0 100 200 300 400 500 600 700 800 900 1000
10

−7

10
−6

10
−5

10
−4

Iterations

M
S

E

 

 

η = 10−4

η = 10−5

η = 10−6

ML 5Hz − 1 spike
ML 5Hz − 2 spikes
ML 5Hz − 3 spikes
ML 5Hz − 4 spikes
ML 5Hz − 5 spikes

Figure 2. Trend of the mean square error during the iterative
process performed to train a read-out map associated with the
resonant neuron at 62.5Hz. The markers indicate when the neu-
ron is adequately stimulated in order to emit a certain amount
of spikes. By changing the learning rate from 10−5 to 10−3 we
can speed up the process, although, using η = 10−3 can cause
oscillations in the error evolution. The level of MSE obtained
using the pseudo-inverse method is about 3.5 ∗ 10−7

Different learning strategies are used in the proposed
MB architecture to generate the desired behavioral re-
sponses. In particular the synaptic weights are modulated
through experience using STDP.

A decay rate allows the system to work in dynami-
cally changing environments: here the learned sequences
could be forgotten if no longer rewarding. Interesting ap-
plications of this learning paradigm to biorobotics, to-
gether with details on the parameters, are reported in
Ref. 13. The role of the connections between the Context
layer and the ML neurons is to strongly inhibit all the ML
neurons except that one representing the next expected
classCe whose synaptic weight is subject to learning dur-
ing the sequence presentation. A Hebbian learning pro-
cess is used to update the synaptic weights between the
Context layer and the ML neurons when pre- and post-
synaptic neurons are concurrently active. When such
synapses, after learning, are sufficiently strengthened, the
ML neuron corresponding to Ce will fire, contributing
to stimulate Ce in the next ring of the Context. Finally
spiking neurons in the KC lattice are fully connected to
the Sum Neurons via plastic trainable synapses. A simple
supervised learning method based on the pseudo-inverse
algorithm51 has been adopted as well as an incremen-
tal learning rule as also illustrated in Ref. 59 where the
spiking activity of the neurons is transformed in continu-
ous signals using different kernel functions allowing the
evaluation of an error needed for the learning. Different
supervised learning methods, based on back propagation
for spiking networks,40, 41 have not been adopted due to
the presence of recurrent connections at the level of the
LSN. Although different learning approaches (e.g. based

on minimizing an upper bound on the KullbackLeibler
divergence from the target distribution to the model dis-
tribution) could be adopted,27 we decided to introduce a
simple incremental learning strategy based on the Least
Mean Square algorithm, that adapts the synaptic weight
on the basis of the computed error and the local activity
generated by the pre-synaptic neuron, working with the
synaptic response instead of directly with the spike train.

Figure 3. Comparison between the results of the read-out map
obtained using a pseudo-inverse (solid line) and an incremental
learning process (dashed line). The output of the Sum neuron
and the Power spectrum of the signals are reported.

For a given Sum Neuron s, the weight value at each
integration step depends on the lattice activity and on the
error between the current output and the desired target
value. This can be summarized in the following equation:

W s
i,j(t+ 1) =W s

i,j(t) + η ∗ Zi,j(t) ∗ Es(t) (3)

where η is the learning factor, Zi,j(t) is the synaptic out-
put of the neuron (i, j) of the lattice at time t and Es(t)

is the error between the desired target and the Sum Neu-
ron s. Similar results could be obtained cumulating the
error in each presented sample and updating the weights
at the end of the presentation. Moreover to stabilize the
learning process an error threshold (Eth = 10−8) is im-
posed to avoid a negligible weight update for each sam-
ple presentation. The trend of the mean square error for
the incremental learning process is shown in Fig. 2. The
exit condition for the learning process consists in moni-
toring the spikes emitted by the ML neurons and, when
a given number of spikes is reached, learning is stopped
and the read-out map stored in the architecture. To eval-
uate the performance of the learning process, a compar-
ison between the pseudo-inverse (standard solution) and
the step-by-step method, more biologically plausible, was
performed. The results, shown in Fig. 3, illustrate that us-
ing an incremental procedure the learning process con-
verges to a signal able to properly stimulate the corre-
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(a) (c)

(b)

Figure 4. Internal simulation of the system while recalling the sequence ABBA and BDDC in the first and second row of each
subfigure respectively. The AL input layer for the first element of each sequence is reported (a) and followed by the Context activity
internally generated by the system (b) until one of the End Sequence Neurons is excited (c). The number of emitted spikes is used to
select the most rewarding sequence that in this case is BDDC. The empty circles indicate the neurons enrolled in each ring of the
Context layer, the most active (i.e. winner) neuron is indicated with a filled circle.

sponding ML neuron by emitting that maximum amount
of allowable spikes. However, the output trend of the Sum
neuron does not fully match the sinusoidal target.

In the simulations reported in the following sections,
the pseudo-inverse method was adopted to speed-up the
learning process.

3. Simulation results

To analyse the network activity, a simple sequence of
three different elements ABC was provided to the sys-
tem. The presented objects are identified through a set of
features that excite the AL layer. Here and in the follow-
ing simulations the objects are discriminated using four
different features, each one characterized by four differ-
ent values. The AL layer is directly linked through ran-
dom connections with the KC network, characterized by
a sparse spiking activity. When the first input is provided,
due to the absence of already established classes, a new

read-out map is created and trained to generate a periodic
signal able to stimulate the associated ML neuron created
to resonate at 62.5Hz. Between the Sum neuron and the
ML neuron a Heaviside function is introduced to avoid
classification problems, normalizing the amplitude of the
stimulus and creating an impulse train. The active class
neuron is linked to the Context layer that now contains a
single neuron placed in the inner circle. When the second
input is presented, the ML neuron previously created is
not correctly excited and a new read-out map is generated
and associated with a new ML neuron tuned to resonate at
a different frequency. At the same time new neurons are
enrolled in the Context layer because a new class has been
created and connections between these neurons and the
ML neurons are established. The Context neuron of the
first ring diffuses in the second ring and the interaction
with the active class neuron determines the new winner
in the Context layer. Finally to reinforce the link between
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Figure 5. Activity of the network when the sequenceABC is provided and also subsequences are retained. Each row represents the ac-
tivity of the AL layer, ML neurons, Context layer and End Sequence neurons respectively. The filled circles represent the active neurons:
multiple chains are generated to trace the subsequences BC and C in the Context layer.

the previous element of the Context and the actual active
resonant neuron, their synaptic connections are strength-
ened. The same process is repeated for the third input
that is associated with a new class neuron. In this case
a rewarding signal is provided, the End Sequence neu-
ron associated with the third ring of the Context layer is
excited and the connection between the active Context
neuron in the outer ring and the End neuron is reinforced
through STDP. The End Neuron resets the Context activ-
ity and the same sequence is represented multiple times
to improve the strength of the learned synapses that con-
tribute to the memory formation. For the parameters cho-
sen, about 4-5 presentations are enough to create a well
established memory. In the output layer (see Fig. 1) the
activity of the so-called Persistence and Sameness neu-
rons, already modelled in previous works,20 is concur-
rently stimulated and can interact with the learning pro-
cess. When the objects are presented for the first time to
the network there is no activity in the output layer: the
subsequent presentations generate an activity that can be
used both to identify the repetition of the same input as in
the delayed matching-to-sample task (i.e. Sameness neu-
ron) and to polarize the attention to a certain stimulus if
continuously presented.20

3.1. Decision making process

The architecture allows to store and consequently re-
trieves multiple sequences to perform a decision making
process. A rewarding signal, provided at the end of each
sequence, acts as a quality indicator. In our model the
number of spikes of the End neuron indicates the level
of reward associated with the generated sequence. As an
example in Fig. 4 after learning both sequences ABBA
and BDDC, the system is requested to choose which se-
quence to generate in front of the presentation of the first
two objects of the two sequences (A andB). This is a typ-
ical case of landmark sequence following to reach a feed-
ing place. The system internally simulates one and then
the other sequence and compares the number of spikes of
the End Sequence neuron in both cases. In the reported
example the sequence BDDC is the most rewarding one
and then the behaviors related to this sequence are per-
formed.

3.2. Learning sequences and subsequences

Further exploitation of the possibilities offered by the
architectures consists in learning not only the sequence

of the presented elements but also the subsequences
included therein. Here we are widening the potentialities
offered by the model, which is still based on MBs, but

improved to provide interesting properties useful for real
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applications. This is obtained allowing each presented
element to activate, besides a neuron in the ring of the
Context Layer standing for the current time step in the
sequence, also a neuron in the first ring of the Context.

(a)

(b)

Figure 6. Behaviour of the ML neurons and Context layer
during the presentation of the second and third element of the
sequence ACC when the sequence ABC is not completely
learned (a) and when the memory trace is well established after
multiple presentations (b). In (a) the fresh information provided
in input wins the internal competition whereas in (b) the Context
activity prevails over the external input, treated as disturbance
in order to reach the final reward.

In this way, independently of which is the first ele-
ment of the sequence, each element is treated as a starting
point. This leads to generate and store multiple chains of
context activity: in presence of very noisy and complex
conditions this strategy could be useful to retain only sta-
tistically relevant sub sequences. In fact, depending on
how frequently the sub sequence is presented, this can be
reinforced more than others and considered as most reli-
able to be generated when the initial element is presented.

Figure 7. Behaviour of the active neurons in the Context layer
when the sequence ABC is presented. During the first 1000
simulation steps the presentation of A sustains the activity of
the corresponding neuron (Class A) in the first ring; afterwards
the second element B activates the associated neuron both in
the second and in the first ring starting a new subsequence. In
the meantime the activity due to object A is still present in the
first ring even if with a slight decrease in time: this allows STDP
learning that will reinforce the synapse connecting the neuron
A in the first ring and neuron B in the second ring. The pro-
cess continues also for the object C. Circles indicate neurons,
the winner is filled and the colour map indicates the mean mem-
brane potential activity in the Context layer.

An example of learning subsequences is shown in
Fig. 5, where the evolution of the Context layer while
learning the sequence ABC is reported. Each element
of the sequence creates a trace in the Context layer that
starts from the inner ring and propagates towards the
outer ones. The memory trace in the Context layer is in-
crementally strengthened through multiple presentations
of the same sequence. Normally the external input guides
the network activity as shown in Fig. 6 (a) where, after a
few presentations of the sequence ABC, a new sequence
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ACC is given. From the other hand, as shown in Fig.
6 (b), if the rewarding sequence is repetitively presented
(about 4-5 presentations are needed for the actual param-
eter choice), the information stored in the Context layer
in terms of synaptic weights, becomes more relevant to
win the competition with external inputs, considered as
disturbances to be filtered out, in order to obtain the ex-
pected final reward.

As previously introduced, the learning between the
Context layer and the ML neurons, as well as the learn-
ing among the rings of the Context layer, is performed
between two processing windows related to two consec-
utive stimuli presented at different times. In view of a
robotic implementation, the time between two consecu-
tive simulation windows was not taken into account. Ba-
sically our idea was that the actions performed by the
robot are relevant for the next object presentation. For in-
stance in a multiple T-maze experiment a variable time
interval can pass when the robot, after executing a be-
havior, is involved in looking for other information in the
scene (see Section 5 for more details). The time lapsed
between two sensorial acquisitions could therefore be of
the order of seconds. Even if STDP works in time scales
in the range of tens of milliseconds, learning processes
can be expanded: a plausible solution is proposed by us-
ing a neuron reverberation mechanism.34 The neural ac-
tivity, when the input stimulus is switched off, persists
in time with a continuous decrement of the firing rate. In
this way a trace of the residual activity can persist and this
causes STDP adaptation even after seconds. In our model,
an example of the reverberation phenomenon in the Con-
text layer is reported in Fig. 7 where the time evolution
of all the active neurons in the Context layer is shown
during the presentation of the sequence ABC. Learning
of multiple sub sequences is evident from the contempo-
rary activation of the actually presented element in each
active ring. The neural activity after the presentation of
the stimulus slowly fades, maintaining a residual spiking
activity within the successive simulation window and al-
lowing STDP with other Context neurons. When the sim-
ulation window of 1000 steps (with a dt=0.08ms for a
total of 80ms) is completed and the input current for the
Context neuron, generated by the ML neurons is finished,
in the successive simulation window a residual current
is provided. Therefore the previously active neurons pro-
long their activity in a fading way. The input is fixed to
10 pA that represents a typical mean input value when the
ML neurons are active and decreases with a time constant
τ = 400ms. In this way the spiking rate decreases until

the input current is not enough to stimulate the neuron.
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Figure 8. Sensitivity to the input current when the fourth fea-
ture of object A is affected by noise after the read-out map learn-
ing.
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Figure 9. Normalized activity of the two ML neurons associ-
ated with the class A (5Hz ML) and E (10Hz ML) when the
input neuron associated to the last feature is increasingly acti-
vated from a completely missing information (value 0) to the
full presence (value 1).

3.3. Sensitivity analysis

To better understand the robustness of the system to noisy
signals and parameter variations a sensitivity analysis
was performed. In particular we started by analysing the
behavior of the LSN when the input current of one fea-
ture is modified with respect to the default value used
during learning. In Fig. 8 an example is shown of how
the learned sinusoidal waveform at 62.5Hz is affected
by noise applied to the current associated with one of the
features coming into the AL input layer. The behavior is
robust for a wide range of perturbations, until ±10% if a
single feature is affected and about±5% if all features are
subject to noise. Beyond these values the activity of the
sum neuron will no longer be able to trigger the resonator.
An interesting analysis was performed in relation to the
creation of basins of attraction between similar classes.
In particular we considered the learning of two different
classes, A and E that differ only for the value of the last
feature that in E is missing, therefore no input neuron
is stimulated referring to the missing feature. During the
learning phase pattern A was provided with noise of 5%
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and 10% that reduced the value of the last feature and
pattern E with noise that increases of the same quantity
the last feature otherwise not present. During the testing
phase, the response to the complete range of values was
analysed and the normalized activity of the two ML res-
onant neurons, associated with the two classes, is shown
in Fig. 9.

Table 1. Robustness of the network behaviors when
the synaptic weights involving the Context layer
are modified for two distict cases: (WML−to−C

vs Wexc−C ) and (Winh−C vs WML−to−C ) .

WML−to−C (a) Wexc−C Ratio Beh.(a) Beh.(b)
(b) Winh−C

3.5 3.5 1
√ √

7 7 1
√
∗

√
∗

1.75 1.75 1 P1a P1b

7 3.5 2
√
∗ P2b

3.5 1.75 2
√

P2b

10.5 3.5 3
√
∗

√
∗

3.5 1.17 3 P2a P2b

1.75 3.5 0.5 P1a P3b

3.5 7 0.5 P1a P3b

3.5 10.5 0.33 P2a
√
∗ ∗

A smooth transition between the two classes can be
appreciated, as expected in a reliable classifier when rep-
resentative input patterns are next one another for the
difference of only one feature. Another important as-
pect investigated refers to the robustness of the network
to parameter variations. Due to the presence of multiple
parameters, we considered the most salient elements of
the Context layer that could be crucial for memory for-
mation. We started considering the synaptic connections
from the ML neurons to the Context layer (WML−to−C)
and a comparative analysis with the excitatory synapses
within the Context (Wexc−C) was performed. Table 1 re-
ports the behavior of the system when the absolute value
and the ratio between the synaptic weights of these fixed
synapses is changed. The network is robust and correctly
works with different weight configurations (symbol

√
)

besides the default values reported in the first row. In
some cases, the behavior is still correct but the maximum
spiking rate increases creating potential problems in ex-
tracting the correct winning neuron (symbol

√
∗). Prob-

lems occur when either the weight value is too low to
correctly stimulate the post-synaptic neurons or the ratio
is significantly modified. In particular two specific prob-
lems were identified: P1a - due to the poor activity there
is a wrong selection of the winner neuron in the Context

Layer and the correlation between the Context Layer and
the End sequence neurons is not correctly learned; P2a -
the unbalancing due either to the strong excitation com-
ing from the previous ring in the Context or due to the
predominant contribution coming from the ML neurons
produces an incorrect selection of the winning neuron.

A similar analysis was performed taking into ac-
count the inhibitory synapses in the Context layer
(Winh−C) instead of the excitatory ones as also reported
in Table 1. All the network functionalities are maintained
for many weight configurations. The problems identified
are: P1b - due to the reduced activity caused by low val-
ues for the WML−to−C , there is a wrong selection of the
winning neuron in the Context Layer, in fact the rever-
beration activity becomes relevant maintaining the previ-
ously selected winner; P2b - the effect of the inhibition
is too low and there is no longer a unique winner among
the neurons of the same ring in the Context Layer; P3b -
when the inhibitory effect is too strong, the network activ-
ity in the Context Layer disappears and it is not possible
to find a winning neuron. Moreover, in some cases, the
behavior is still correct but the inhibition is excessively
strong producing very low values for the membrane po-
tential (symbol

√
∗ ∗).
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Figure 10. Success Rate, in terms of sequence learning capa-
bility, as a function of the added noise level (see text for details).

Concerning the effect of noise in the system, the ro-
bustness of the network was evaluated introducing white
noise in the input current of each neuron, both in the ex-
ternal input and in input currents coming by the synaptic
connections with other neurons. All the simulations were
performed adding noise that dynamically changes each
integration step, in a range from ±2% to ±50%. The ob-
tained results, depicted in Fig.10 show that, as the noise
level increases the success rate decreases since an incor-
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rect neuron can be selected as winner in the Context layer
causing a different sequence to be learned or reproduced.

4. Remarks

The model presented has a number of interesting features.
The signals generated by the Sum Neurons, thanks to the
dynamics embedded into the LSN, can be used as pattern
generators. Besides classification and sequence learning,
as discussed in this paper, the structure is suitable also
for motor learning, providing time dependent signals to
control parameters related to the locomotion system. The
same LSN can be so utilised and the motor learning fea-
ture can be included simply by adding another set of
read-out maps. The peculiarities of the strategy for mo-
tor learning can be directly adopted from Refs. 5. In this
way, the model built and the simulation results are a typ-
ical example of implementation of the concept of Neural
Reuse. Moreover, in the current model, due to the small
size of the LSN (8x8 neurons), massive connectivity be-
tween this lattice and the Sum Neurons is assumed. This
could be relaxed in larger sizes, using a randomly based
connectivity. Another characteristic worth to be discussed
regards the target signals for classification: these, in the
current model are generated, for the sake of simplicity,
via a sinusoidal signal.

Figure 11. Normalized activity of the bursting neuron is
shown in the first panel when the input current is a square wave-
form with amplitude A = 10pA, period of 62.5Hz and duty
cycle 50%. The time evolution of the post-synaptic current is
also reported. The learned signal reproduced by the Sum neu-
ron and its power spectrum are reported in the second panel.

However, a more biologically relevant target signal
can be provided using a target neuron. This can be as-
sumed to deliver to the MBs information coming from
general sensory systems or other parts of the brain, to
create a match between the information produced by
the MBs and that (e.g. sensory) signal. This process has
deeply been studied in MBs. There are a lot of extrinsic
neurons that innervate MBs, constituting input and out-
put stations among these centres and a lot of other brain
areas. To make our model next to this representation, in-
stead of a simple sinusoidal wave, a more biologically
plausible burst of activity was considered. An Izhikevich
Phasic bursting neuron can be used to generate a suitable
train of bursts that are processed via a synapse, and the
post synaptic current is then used as a target signal for
the read-out map learning.49 In Fig. 11 the normalized
activity of the bursting neuron is provided when the input
current is a square waveform with amplitude A = 10pA,
period of 62.5Hz and duty cycle 50%. The results of
the learning process are also reported together with the
Power spectrum of the learned signal where the predomi-
nance of the 62.5Hz component, needed to stimulate the
resonator, is evident. Another aspect regards the output
neurons: these act as integrators with different time con-
stants that can be tuned, depending on the behavior to be
boosted. For example, the time constant fixes the upper
limit for the number of repetitions of the same stimu-
lus that the system can retain as single objects within a
complex sequence. Beyond this number, the persistence
behavior is elicited,6 discarding the input information to
continue the on-going behavior.

5. Robotic experiments

Considering that honeybees are able to negotiate a maze
by using symbolic cues,31, 92 and ants are able to navi-
gates through routes,26 we embedded our control archi-
tecture on a roving robot to face with scenarios where
the available paths from the entrance to the exit have
to be learned.91 In Ref. 26 the capabilities of ants to
learn routes on the basis of familiar scenes is modelled
through an Artificial Neural Network that, using a whole
panoramic image as input can learn the followed routes.
Instead the proposed architecture extracts from the visual
input the landmarks of interest and process the acquired
landmark features using a spiking neural network to learn
multiple sequences and the corresponding expected re-
wards. The robot is a differential drive and includes a PC
on board and a series of micro-controller-based boards to
handle the motors. The platform is equipped with two ul-
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trasound sensors for obstacle detection and a panoramic
camera to identify the presence of landmarks in the en-
vironment. In the proposed experiments two monitors
placed at the boundaries of the arena are used to dynam-
ically show landmarks depending on the position of the
robot in the maze. The visual input from the camera is
processed using OpenCV libraries for segmentation to
identify landmarks and their features to be used as inputs
for the control network. The computational time to pro-
cess the signals corresponds to a few seconds in the actual
robot setup, depending on the data logging. Depending
on the obtained results an action/behavior is performed:
it consists of a turning action and a forward motion to
reach a new branch of the maze. The two monitors allow
to emulate the presence of landmarks in each branch of
the multiple T-maze. To guide the robot behavior we used
a double reversed T to indicate a right turn and a double
circle for a left turn. During learning the correct actions
to be performed are provided showing only one landmark
each time in the monitor positioned in the correct turning
direction (see Fig. 12 (a)). During the testing phase only
one monitor is used and the structure of the maze is mod-
ified to demonstrate that the robot is able to solve it using
the knowledge acquired in the previous phase (Fig. 12
(b)). The connections with the neurons associated to the
correct behavior are reinforced during the learning phase
and the presented objects stimulate the correct movement
to fulfil the task.

Figure 12. Robotic experiments where different maze config-
urations are used during the Learning (a) and the Testing (b)
phase. The solid line represents the trajectory followed by the
robot. The scenario is equivalent to the biological experiments
performed with honeybees.91 During the Learning phase the
robot associates a turning direction to every element presented.
In the Testing phase (b) the robot can solve a different maze
using the landmark projected in a unique monitor.

These results show that the robot is able to negoti-
ate a maze by using symbolic cues as shown by honey-

bees.91 We then included the sequence learning capabili-
ties considering a more complex scenario. The robot ini-
tially learns two sequences of actions to be performed to
solve the maze following two different routes that guaran-
tee, at the end, reward signals with different values. The
first sequence (i.e. Inverted−T , Circle, Inverted−T )
is associated to the left, right and then left maze-branch
selection, whereas the second learned sequence (i.e. T ,
inverted−T ) is associated to a right and then left turning
action. The reward level that modulates the stimulation of
the End Sequence neuron, is lower for the first sequence
than for the second one that should be preferred. Dur-
ing the testing phase the robot is placed in front of two
concurrent stimuli (i.e. T and inverted − T ) to perform
a decision making process. In this way the architecture
can internally retrieve different sequences, depending on
the initial stimulus, and selects the most performing one
depending on the spiking activity of the End Neuron, that
encodes the cumulative level of rewards obtained, for that
sequence, during the learning process. The control struc-
ture internally simulates the outcome of the two possible
sequences to be followed and, on the basis of the expected
reward, selects the most rewarding one (Fig. 13). Multi-
media materials on the performed experiments are avail-
able on the Web.19

Figure 13. After learning two sequences, the robot selects the
most rewarding one performing a decision making process. The
learned sequences are depicted on the two sides; the solid line
represents the selected trajectory during the testing phase.

6. Conclusions

The insect Mushroom Bodies were studied here to inspire
the implementation of neural models able to deal with
classification, sequence and subsequence learning. The
model being able to concurrently reproduce also other
features like persistence, expectation and motor learning,
constitutes a clear example of Neural Reuse. The idea
is to exploit the complex dynamics present within the
MBs, here in part modelled using a LSN, through extrin-
sic neurons working as read-out maps. The key points that
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guided the new design process, compared with the previ-
ous developed structures, include: the possibility to elicit
completely different behaviors concurrently (classifica-
tion, sequence and subsequence learning, persistence, ex-
pectation and motor learning), according to the paradigm
of Neural Reuse; the presence of sparse spatial activity
inside the LSN instead of cluster formation; the introduc-
tion of a growing mechanism for classification and the
inclusion of multiple ways to handle the internal dynam-
ics using several read-out maps mimicking the role of ex-
trinsic neurons. Moreover the presence of a Context layer
allows learning and retrieving of multiple sequences, in-
cluding the possibility to extract subsequences from the
whole stream of events. The learning process in the Con-
text is based on STDP that allows, together with the re-
verberation mechanism, to correlate events with a large
time scale. Decision making processes can also be repro-
duced considering the End Sequence stimuli as rewarding
signals that can be modulated. In this way the architec-
ture can internally retrieve different sequences, based on
the initial stimuli. Then it can select the most performing
one depending on the spiking activity of the End Neu-
ron, that contains information about the cumulative level
of reward obtained, for that sequence, during the learn-
ing process. The idea is to extract information from the
performed simulations, to propose new experimental set-
up in order to validate the model and the hypotheses in-
cluded. This step will lead to further tune the parame-
ters according to the biological experimental results or
to those coming from the literature. Our model is there-
fore the result of known facts in insect neurodynamics
and of some hypotheses on their role in the processing of
time related events: Drosophila melanogaster brain has
all the ingredients to solve the sequence learning prob-
lem, even if, either for the lack of suitable experiments,
or for the missing development of suitable read-out maps
in its brain, such capabilities have not yet been discov-
ered or shown. In one or the other case, we can state that
MBs are a perfect candidate to be involved in this spatio-
temporal learning process, representing a clear example
of Neural Reuse.
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feedback in CNN-based central pattern generators, Inter-
national Journal of Neural Systems 13(6) (2003) 349–362.

12. P. Arena, L. Fortuna, M. Frasca and L. Patané, A cnn-based
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